TÓM TẮT Nghiên cứu này trình bày việc chế tạo các vật liệu từ GO, rGO từ graphite. Sau khi tổng hợp thành công GO các hạt V₂O₅ có cấu trúc dạng bông hóa vời các tính chất ưu việt trong hấp phụ khí được tải lên các tấm graphene oxide khử nhằm tăng khả năng hấp phụ khí H₂S của V₂O₅. Vật liệu V₂O₅-rGO sau khi tổng hợp được đánh giá khả năng hấp phụ của nó đối với hỗn hợp khí H₂S+N₂. Trong đó, graphite bị oxy hóa thành graphite oxide bằng phương pháp Hummer. Sau đó, GO được phân tách bằng phương pháp siêu âm để đưa hỗn hợp thủy nhiệt tạo bông hoa V₂O₅. Trong suốt quá trình thủy nhiệt các bông hoa V₂O₅ dần hình thành trên các tấm graphene oxide và các tấm graphene oxide dần bị khử thành graphene oxide khử (rGO). Khả năng hấp phụ khí H₂S của vật liệu được đánh giá bằng cách trực tiếp đưa khí H₂S đi qua vật liệu. Nồng độ khí H₂S trước và sau khi bị hấp phụ được xác định thông qua cảm biến để xác định dung lượng hấp phụ khí H₂S của vật liệu V₂O₅-rGO. Các yếu tổ ảnh hưởng đến cấu trúc vật liệu V₂O₅-rGO cũng đã được khảo sát đánh giá như ảnh hưởng của thời gian thủy nhiệt lên cấu trúc bông hoa V₂O₅ hình thành. Kết quả cho thấy khi tăng thời gian thủy nhiệt cấu trúc của bông hoa V₂O₅ càng trở nên phức tạp, mức độ tinh thể hóa của bông hoa V₂O₅ ngày càng cao. Tỉ lệ V₂O₅:rGO cũng ảnh hưởng đáng kể đến cấu trúc của vật liệu V₂O₅-rGO cũng như khả năng hấp phụ khí H₂S của vật liệu V₂O₅-rGO. Giấy xúc tác chứa vật liệu V₂O₅-rGO đã được tổng hợp thành công từ sợi alumina-silica và vật liệu V₂O₅-rGO. Giấy xúc tác chế tạo có độ xốp cao, V₂O₅-rGO được phân tán tốt vào nền giấy xúc tác, cấu trúc V₂O₅-rGO không bị ảnh hưởng trong quá trình tổng hợp giấy xúc tác. Khả hấp phụ khí H₂S của giấy xúc tác chứa vật liệu V₂O₅-rGO cũng được cải thiện đáng kể nhờ cấu trúc xốp của giấy xúc tác. ## **ABSTRACT** This study presents the fabrication of materials from GO and rGO from graphite. After successfully synthesizing GO, V₂O₅ particles with a flocculated structure with excellent gas adsorption properties were loaded onto reduced graphene oxide sheets to increase the H₂S gas adsorption capacity of V₂O₅. The synthesized V₂O₅-rGO material was evaluated for its adsorption capacity for the H₂S +N₂ gas mixture. In which graphite was oxidized to graphite oxide by the Hummer method. Then, GO was separated by ultrasonication to introduce the hydrothermal mixture to form V₂O₅ flowers. During the hydrothermal process, V₂O₅ flowers gradually formed on the graphene oxide sheets, and the graphene oxide sheets were gradually reduced to reduced graphene oxide (rGO). The H₂S gas adsorption capacity of the material was evaluated by directly passing H₂S gas through the material. The concentration of H₂S gas before and after adsorption was determined through the sensor to determine the H₂S gas adsorption capacity of the V₂O₅-rGO material. Factors affecting the structure of the V_2O_5 -rGO material were also investigated and evaluated, such as the effect of hydrothermal time on the V_2O_5 flower structure. The results showed that as the hydrothermal time increased, the structure of the V_2O_5 flower became more and more complex, and the crystallization level of the V_2O_5 flower increased. The ratio of V_2O_5 :rGO also significantly affected the structure of the V_2O_5 -rGO material as well as the H_2S gas adsorption capacity of the V_2O_5 -rGO material. The paper structure catalyst containing V_2O_5 -rGO material was successfully synthesized from alumina-silica fibers and V_2O_5 -rGO material. The fabricated paper structure catalyst exhibits high porosity, with V_2O_5 -rGO being well-dispersed within the catalyst paper matrix and the structure of V_2O_5 -rGO remaining intact during the synthesis process. The H_2S gas adsorption capacity of the paper structure catalyst containing V_2O_5 -rGO material is significantly enhanced due to the porous structure of the paper structure catalyst.